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 صملخ

 بحيث) singularities(الصغربعض النظريات الفيزيائية تتنبأ بوجود نقاط في الكون متناهية في هناك 

تشكل هذه النقاط مشكلة في علم .  اآبيرا جد) تقوسها(يكون حجمها مساويا للصفر تقريبا ويكون إنحناؤها

وجود مثل هذه النقاط النظرية النسبية العامة حيث أن هذه النظرية لا تقدم من النظريات التي تتنبأ بو. الفيزياء

هناك مشاآل عديدة في علم الكون آمشكلة , علاوة على ذلك. وصفا آافيا لسلوك الكون في مناطق التقوس الكبير

الصغر و آذلك الأفق ومشكلة إنكماش النجوم العظيمة عندما تتقلص هذه النجوم لتكون ثقوبا سوداء متناهية في 

 .مشكلة الإنفجار العظيم التي تنص على أن الكون بدأ من نقطة متناهية في الصغر أخذت في التمدد

آل هذه الإعتبارات تدفعنا الى تقديم فرضية جديدة تقدم حلولا لهذه المشاآل و تقدم نموذجا أآثر واقعية 

" هذه الفرضية هي, في الكون لا يتجاوز هذا الحدلسلوك الكون آما تقدم حدا للإنحناء بحيث أن إنحناء أي نقطة 

 ".فرضية الإنحناء المحدود

لتنفيذ هذه الفرضية قمنا بعمل تعديل على النظرية النسبية عن طريق إدخال قيمة قصوى للإنحناء في 

 :معادلة آينشتاين التالية

                                             µνµνµν πGTRgR 8
2
1

−=−                                           

 :  آما يليΛحيث أصبحت هذه المعادلة بعد إدخال القيمة القصوى للتقوس 

µνµνµνµν πGTgRRgR 8)11(
4
1

2
1

2

2

−=
Λ

−−Λ−−    

 جدا وهذا يؤدي إلى إختزال المعادلة صغيرة R تكون في المناطق قليلة التقوس آما نلاحظ من المعادلة فإنه

 .آينشتاين معادلةؤول الى لت

 قدمنا المعادلة المعدلة ووجدنا من مرآباتها الزمانية والمكانية معادلات تفاضلية من الدرجة في الفصل الثاني

و ) radiation dominated universe(الأولى و الثانية تصف سلوك الكون عندما سيطر عليه الإشعاع 



 N

و آذلك تصف سلوك الكون حسب الشكل ) matter dominated universe(سلوآه عندما تسيطر عليه المادة

. آذلك وجدنا آيف يتغير حجم نجمة عظيمة مع الزمن عندما تنكمش هذه النجمة لتشكل ثقبا أسود, الهندسي له

    .قمنا برسم هذه الحلولثم ادلات التفاضلية  وجدنا حلولا باستخدام الحاسوب للمعوفي الفصل الثالث
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                                   Abstract 
 

The infinities or singularities (points of spacetime where the curvature blows 

up) are considered as serious problems in physics. Classical general relativity predicts 

spacetime singularities. This theory does not give an enough description of the 

behavior of the spacetime in the high curvature regions. On the other hand, in 

quantum field theory there are other kinds of singularities coming from the non-

renormalizability of this theory. Moreover, there are several problems in cosmology 

such as the horizon and flatness problem. 

All these considerations point in the direction of the Limiting Curvature 

Hypothesis (LCH). This hypothesis provides natural solutions to gravitational 

singularities and introduces a more realistic cosmological model. According to this 

hypothesis, the curvature of spacetime at any point can never be larger that certain 

limiting value. 

In order to implement this hypothesis, we must modify the general relativity 

by introducing a limiting value for the curvature; this can be done by modifying 

Einstein’s field equations:                                                                                  

     µνµνµν πGTRgR 8
2
1

−=−    

By inserting a cosmological constantΛ , which is the limiting value of curvature, the 

modified field equations are:  



 P

     µνµνµνµν πGTgRRgR 8)11(
4
1

2
1

2

2

−=
Λ

−−Λ−−                                                         

At low curvatures, when R is very small, the new equations are reduced to Einstein’s 

field equations. 

In chapter 2, we introduced the modified field equations which satisfy LCH 

and found first and second order differential equations from the time-time and space-

space components of the field equations for both matter and radiation universes and 

for different kinds of geometries of spacetime, we also obtained nonsingular 

spherically symmetric solution that represent a giant star when it collapses to form a 

black hole. In chapter 3, we solved the differential equations numerically and found 

nonsingular solutions and we plotted these solutions.  

 
 

 
 
 
 
 
 
 
 
 
 
 



 

                                                        Chapter   1 
 

                             Introduction 

It is well known that the most important problems in physics are 

infinities or singularities. Hawking and Ellis [1] define a singularity as a 

point where the metric tensor (to be defined later) is undefined or is not 

suitably differentiable. However the trouble with this is that one could 

simply cut out such points and say that the remaining space represented 

the whole of spacetime, which would then be nonsingular according to 

this definition. Indeed, it would seem inappropriate to regard such 

singularities as being part of spacetime, because the equations of physics 

would not hold at them and it would be impossible to make any 

measurement. Another definition is that singularities are points of the 

spacetime where the curvature blows up. They are tremendously dense 

points with approximately zero volume. Classical general relativity 

(CGR) predicts spacetime singularities as demonstrated by Hawking, 

Penrose, and Ellis in a set of singularity theorems [1,2]. Hawking and 

Penrose state that, for reasonable matter content which is free from exotic 

matter (exotic matter is a concept in particle physics which covers any 

material that violates one or more classical conditions or is not made of 

known baryonic particles. Such materials would possess qualities like 
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negative mass or negative energy or being repelled rather than attracted 

by gravity), spacetimes in general relativity are almost guaranteed to be 

geodesically incomplete (have singularities). The singularity theorems of 

Hawking and Penrose imply that general relativity is an incomplete 

description of the behavior of spacetime at high curvatures.  As examples, 

the two most useful spacetimes in general relativity, the Schwarzschild 

solution describing black holes and the Friedmann-Robertson-Walker 

(FRW) solution describing homogeneous, isotropic cosmologies, both 

contain important singularities. On the other hand, in quantum field 

theory in general and in quantum gravity in particular one is faced with 

other kinds of singularities coming from the nonrenormalizability of these 

theories [3]. The big bang and the big crunch in addition to the 

singularities resulting in the gravitational collapse of massive stars which 

collapse to form black holes are physical examples of gravitational 

singularities. 

Moreover in cosmology there are several problems, (the horizon, 

the flatness, the isotropy of microwave background radiation, and the 

seeds from which galaxies were formed). All these problems found their 

natural solution by introducing a long period of inflation, during which 

the universe expanded exponentially and the spacetime has almost de 

Sitter geometry [4]. 
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All the above considerations point in the direction of the limiting 

curvature hypothesis [5,6,7,8]. In this hypothesis, CGR will be modified 

in order to prevent the occurrence of infinities. This hypothesis provides 

natural solutions to gravitational singularities by introducing a limiting 

value of the curvature. As a result this hypothesis introduces a reasonable 

and a realistic cosmological model of the universe since in the real 

universe there is no meaning to say that something is a singularity and has 

zero volume. In order to implement this hypothesis we will modify 

Einstein’s gravitational action and field equations then we will find 

cosmological equations from the new field equations that describe the 

behavior of the universe for different kinds of matter.     
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                            Chapter   2 
 

                              Theoretical Background 
 

In this chapter, we will talk about classical general relativity and 

Einstein’s field equations, and then we will introduce the limiting 

curvature hypothesis by modifying Einstein’s field equations. After that 

we will find differential equations from the new field equations that 

describe the behavior of the universe for different kinds of matter. We 

will begin by listing some astrophysical terminologies that appear 

frequently in cosmology and astronomy because of their importance.                          

2.1   Astrophysical Terminologies 

2.1.1   The spacetime 

It is a mathematical model that combines space and time into a 

single model. Spacetime is usually interpreted with space being three-

dimensional and time as the fourth dimension. 

2.1.2   The big bang  

In physical cosmology, the Big Bang is the scientific theory that 

the universe emerged from a singularity about 13.7 billion years ago. 

Physicists do not widely agree on what happened before this, although 

CGR predicts a gravitational singularity. Now what are the major 
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evidences which support the big bang theory? The first evidence is that 

galaxies appear to be moving away from us at speeds proportional to their 

distances, this is called “Hubble’s Law” which is:                          

     rHv 0=                                                                                   (2.1) 

where v is the recessional velocity of the galaxy or other distant object, r 

is the distance to the galaxy or object, and 0H  is Hubble’s constant which 

is equal to 71 ± 7 km/s.Mpc 1 ( the value 71 km/s.Mpc is equal to 2.3×10-

18 s-1). This observation supports the expansion of the universe and 

suggests that the universe was once compact.  

The second piece of evidence is that if the universe was initially 

very hot, as the big bang theory suggests, we should be able to find some 

remnant of this heat. In 1965, Penzias and Wilson discovered a 2.7 K the 

Cosmic Microwave Background radiation (CMB) which fills the entire 

observable universe. It was generated in the early universe about 300 000 

years after the big bang and fills all space almost uniformly. This 

radiation has the same distribution in wavelength as does radiation in an 

enclosure whose walls are held at a temperature of 2.7 K. This enclosure 

1 The parsec (pc) is a unit of length used in astronomy, and its length is based on the method of 

trigonometric parallax, one of the oldest methods for measuring the distances to stars. It is defined 

to be the distance from the Earth to a star that has a parallax of 1 arcsecond when the viewing 

position changes by 1 AU. The actual length of a parsec is approximately 3.086 ×1013 kilometers, 

3.262 light-years or 1.918×1013 miles)                                                                                                                                                          
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 is the entire universe. The cosmic microwave background radiation is 

considered as evidence which supports the big bang theory. This is 

thought to be the remnant which scientists were looking for. 

 Finally, the abundance of the light elements (Hydrogen and 

Helium) found in the observable universe is thought to support the big 

bang theory.  

2.1.3   The big crunch  

This is the hypothesis that the universe will collapse upon itself 

after its expansion eventually stops. It is a counterpart to the Big Bang. It 

may happen if the gravitational attraction of all the matter in the universe 

were high enough; the expansion of the universe would slow down and 

then reverse. The universe would then contract and all matter and energy 

would be compressed into a gravitational singularity.                                                                            

2.1.4   The horizon problem 

Collins [9] defines the horizon problem as a problem that arises 

from the similarity of conditions in different parts. The microwave 

background radiation from opposite directions in the sky is characterized 

by the same temperature which is 2.7 K. Such similarity could only be 

established by mutual interactions which could never have taken place, 

because the regions of space from which they were emitted at 500,000 

years were more than light transit time apart and could not have 



 7

"communicated" with each other to establish the apparent thermal 

equilibrium; they were beyond each other's "horizon". This problem is 

called the horizon problem.  

2.1.5   The flatness problem 

It is an observational problem associated with FRW metric [10]. In 

general, the universe can have three kinds of geometries (hyperbolic, 

Euclidean, or elliptic geometry) depending on the total energy density of 

the universe. It is hyperbolic if its density is less than the critical density, 

elliptic if greater, and Euclidean at the critical density. The critical density 

is the boundary value between the model of the universe which states that 

the universe will expand forever (open model) and the model which says 

that the universe will recollapse (closed model). A measurement of the 

actual density of the universe could be compared to the critical density in 

order to determine the fate of the universe. The critical density is given by 

[11]:                                                      

     329
2
0 /105

8
3 cmg

G
H

crit
−×==

π
ρ                                                   (2.2) 

where G is the gravitational constant. The curvature of space depends on 

the ratio
critρ
ρ

=Ω0 . For 0Ω  greater than 1, the universe has positively 

curved or spherical geometry. For 0Ω  less than 1, the universe has 
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negatively curved or hyperbolic geometry. For 0Ω  equal to 1, the 

universe has Euclidean or flat geometry. The behavior of the universe is 

determined according to its geometry.  

The flatness problem arises because of the observation that the 

density of the universe today is very close to the critical density required 

for spatial flatness. Since the total energy density of the universe departs 

rapidly from the critical value over cosmic time, the early universe must 

have had a density even closer to the critical density, leading 

cosmologists to question how the density of the early universe came to be 

fine-tuned to this special value. In the later discussion, we will find 

cosmological equations that describe the universe in the three cases and 

for different kinds of matter. Figure (2.1) illustrates the kinds of 

geometries of the universe.   

                                                     

                           Figure (2.1)   geometries of the universe [12] 
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2.1.6   De Sitter geometry 

De Sitter geometry is the maximally symmetric nonsingular 

vacuum solution of Einstein's field equation with a positive cosmological 

constant Λ . This geometry describes the expansion of the universe 

according to the following equation:                                                                        

     )cosh()( tta =                                                                 (2.3) 

where a(t) is the scale factor which describes the expansion of physical 

spatial distances and t is time. The vacuum dominated space is known as 

a de Sitter space [10]. Figure (2.2) illustrates the difference between the 

de sitter solution and a singular solution. 

 

        

              Figure (2.2)   de sitter solution vs a singular solution. 
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2.1.7   Homogeneous and isotropic cosmology 

 Carroll [11] defines homogeneity as the statement that the metric 

is the same throughout the space. And he defines isotropy as the 

statement that at any specific point in the space, the space looks the same 

no matter what direction you look in. A space can be homogeneous but 

nowhere isotropic, or it can be isotropic around one point without being 

homogeneous (such as a cone, which is isotropic around its vertex but 

certainly not homogeneous). On the other hand, if a space is isotropic 

everywhere then it is homogeneous. Likewise, if it is isotropic around one 

point and also homogeneous, it will be isotropic around every point.   

2.2   A brief review of CGR 

It is well known, in classical mechanics, that gravitation is caused 

by forces between masses. In the theory of general relativity, Einstein 

showed that, instead, gravitation is due to curvature of spacetime that is 

caused by the presence of matter. The matter tends to pull the coordinates 

system toward them so the coordinates system appears to be curved 

(Figure (2.3)). CGR calls for the curvature of spacetime to be produced 

by the mass-energy and momentum content of the matter in spacetime. In 

the following subsections, we will discuss some fundamental topics in 

general relativity.  
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          Figure (2.3)   curvature caused by matter [13] 

2.2.1   Principle of equivalence 

“Einstein suddenly realized, while sitting in his office in Bern, 

Switzerland, in 1907, that if he were to fall freely in a gravitational field 

(think of a sky diver before she opens her parachute, or an unfortunate 

elevator if its cable breaks); he would be unable to feel his own weight. 

Einstein later recounted that this realization was the "happiest moment in 

his life", for he understood that this idea was the key to how to extend the 

Special Theory of Relativity to include the effect of gravitation. We are 

used to seeing astronauts in free fall as their spacecraft circles the Earth 

these days, but we should appreciate that in 1907 this was a rather 

remarkable insight”. This principle is the fundamental postulate of the 

general theory of relativity which says, in other words, that [13] 

“gravitation and acceleration are equivalent. If someone were locked up 

in a small box, he would not be able to tell whether the box was at rest on 
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Earth and subject only to the Earth’s gravitational force, or accelerating 

through space at 9.8m/s2 and subject only to the force producing that 

acceleration. In both situations he would feel the same and would read the 

same value for his weight on a scale. Moreover, if he watched an object 

fall past him, the object would have the same acceleration relative to him 

in both situations”. 

2.2.2   Manifolds and geodesics 

A manifold is an abstract mathematical space in which every point 

has a neighborhood which resembles Euclidean space, but in which the 

global structure may be more complicated. It is the curved-space 

generalization of the notion of "Euclidean space". Carroll [11] said that 

the manifold is a space which may be curved and have a complicated 

topology, but in local regions it looks just like Rn which is the vector 

space for the n-dimensional vectors.  

A geodesic is the curved-space generalization of the notion of a 

"straight line" in Euclidean space. We all know what a straight line is: it is 

the path of shortest distance between two points. But there is an equally 

good definition; a straight line is a path which parallel transports its own 

tangent vector. 
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2.2.3   Tensors 

Tensors provide the mathematical framework for formulating and 

solving problems in areas of physics such as elasticity, fluid mechanics, 

and general relativity. Tensors are very important in general relativity 

since Einstein’s field equations are tensor equations. In order to 

understand the mathematics of general relativity, we should understand 

the mathematics of tensors. In this subsection, we will talk about this 

important topic.  

It is easy to understand the second-rank tensor as it is a matrix 

with a number of rows and columns. An n-th-rank tensor in m-

dimensional space is a mathematical object that has n indices and mn 

components and obeys certain transformation rules. Each index of a 

tensor ranges over the number of dimensions of space. Tensors are 

generalizations of scalars (that have no indices), vectors (that have 

exactly one index), and matrices (that have exactly two indices) to an 

arbitrary number of indices.  

The notation for a tensor is similar to that of a matrix (i.e., aij), 

except that a tensor may have an arbitrary number of indices, aijk, aijk,ai  
jk, 

where the upper indices are called "contravariant" indices and the lower 

indices are called "covariant" indices. Note that the positions of the slots 
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in which contravariant and covariant indices are placed are significant so, 

for example, aij 
k is distinct from ai jk.  

While the distinction between covariant and contravariant indices 

must be made for general tensors, the two are equivalent for tensors in 

three-dimensional Euclidean space, and such tensors are known as 

Cartesian tensors. The contraction of a tensor occurs when a pair of 

indices (one a subscript, the other a superscript) of the tensor are set equal 

to each other and summed over. In the Einstein notation this summation is 

built into the notation. The result is another tensor with rank reduced by 

two. The Einstein notation is: ∑=
i

i
i

i
i aaaa    

The zeroth-rank tensors can be represented by scalars, first-rank 

tensors can be represented by vectors, and the second-rank tensors can be 

represented by matrices. In the following subsections, we will talk about 

four tensors that are very important in CGR, these tensors are: the metric 

tensor, the Riemann tensor, the Ricci tensor, and the stress-energy tensor.   

2.2.3.1   The metric tensor 

 It is the fundamental object of study in general relativity. 

Mathematically, spacetime is represented by a 4-dimensional 

differentiable manifold M and the metric is given as a covariant second-

rank symmetric tensor on M. Physicists usually work in local coordinates 

µx  (where µ runs from 0 to 3):                       
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     zxyxxxtx ==== 3210 ,,,                                                     (2.4) 

the metric is represented by the following equation:            

     νµ
µν dxdxgds =2                                                                       (2.5) 

the factors dxµ are the gradients of the scalar coordinate fields xµ. 

The metric is thus a linear combination of tensor products of the gradients 

of coordinates. With the quantity dxµ being an infinitesimal coordinate 

displacement, the metric acts as an infinitesimal invariant interval squared 

or line element.                                           

A simple example of the metric is the metric of flat spacetime 

which is [8]:                                                             

     22222 dzdydxdtds +++−=                                                     (2.6) 

where 1=c . If we compare equation (2.5) with equation (2.6) taking into 

consideration equation (2.4), the metric tensor can be represented by the 

following matrix:   

     

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛−

=

1000
0100
0010
0001

µνg .                                                            (2.7) 

From the matrix representation of the metric tensor we see that: 

100 −== ttgg  (which is called the time-time component of the metric 

tensor, and 1332211 ==== rrgggg  (which are called the space-space 

components of the metric tensor).  
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In spherical coordinates, the flat space metric is:  

     22222 Ω++−= drdrdtds                                                        (2.8) 

where 2222 sin φθθ ddd +=Ω  is the standard metric on a 2-sphere which 

is considered as a good example of a space with curvature. It is the locus 

of points in R2 at distance 1 from the origin. 

 Another metric is FRW metric which is [14,15,16]:  

     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω+

−
+−= 22

2

2
222

1
)( dr

kr
drtadtds                                     (2.9)                                           

here r is dimensionless and the dimension in a, k is a constant parameter 

that determines the curvature of the universe. If k=1, the universe is 

closed, positively curved, and finite. If k=0, the universe is open, flat, and 

infinite. If k=-1, the universe is open, negatively curved, and infinite. 

FRW is the standard big bang model. It is the solution of the gravitational 

field equations of general relativity. These can describe open or closed 

universes.  All these FRW universes have a singularity at the origin of 

time which represents the big bang. FRW spacetimes come in a great 

variety of styles, expanding, contracting, flat, curved, open, closed, etc. 

The relation between Ω0 and k is [11]:  

     22
0

0 1
aH

k
=−Ω                                                                       (2.10)           

Also there is an important metric in CGR which is the 

Schwarzschild metric [11,18]:   
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     222
1

22 2121 Ω+⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −−=

−

drdr
r

GMdt
r

GMds                 (2.11) 

where M is a constant with the dimensions of mass. The Schwarzschild 

solution (we will derive it later) describes the gravitational field outside a 

spherical, non-rotating mass such as a (non-rotating) star or black hole. It 

is also a good approximation to the gravitational field of a slowly rotating 

body like the Earth or Sun. It is the most general spherically symmetric, 

vacuum solution of the Einstein field equations. 

2.2.3.2   Riemann tensor, Ricci tensor, and Ricci scalar 

The Riemann tensor [19], or the Riemann-Christoffel curvature 

tensor [17], or Riemann curvature tensor [14] is a four-index tensor that is 

useful in general relativity since it gives a description of the curvature of 

spacetime. It is the only fourth-rank tensor that can be constructed from 

the metric tensor and its first and second derivatives. Since the Riemann 

tensor is a four-index tensor in a four-dimensional spacetime, it has a 44 = 

256 components. The Riemann tensor is defined in the following equation 

[20]:                                           

     σ
α

µ
σβ

σ
β

µ
σα

µ
βα

µ
αβ

µ
αβ vvvvvR ΓΓ−ΓΓ+Γ−Γ= ,,                     (2.12)                     

where Γ are the Christoffel symbols and the comma in the equation 

denotes differentiation ( µ
βα

µ
αβ vv Γ∂=Γ , ). Christoffel symbols are defined 
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from the metric tensor and its derivatives according to the following 

equation [11]:  

     ( )µνρρµρµ
σρσ

µν gggg vv ∂−∂+∂=Γ
2
1                                    (2.13) 

The contraction of the Riemann tensor on the first and third 

indices is known as the Ricci tensor [11]:                                                                                          

     λ
µλνµν RR =                                                                           (2.14) 

the components of the Ricci tensor for metric (2.9) are [17]: 

     
ijij

tt

gkaaaR
a
aR

~)22(

3

2 ++−=

=

&&&

&&

                                                    (2.15)                                          

where ttR  is the time-time component of the Ricci tensor, ijR  is the 

space-space components, and ijg~  is the metric for a three-dimensional 

maximally symmetric space which can be defined according to the 

following equation:                                                                             

     ijij gtag ~)(2=                                                                        (2.16)                                         

The contraction of the Ricci tensor is the Ricci scalar (also known 

as the scalar curvature). It is obtained by setting the indices of the Ricci 

tensor equal [11]:   

     µν
µνµ

µ RgRR ==                                                                 (2.17)                                           

If we use Einstein notation here we have ...1
1

0
0 ++=== ∑ RRRRR

µ

µ
µ

µ
µ  , 
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this summation is equal to the trace of the Ricci tensor. The relation 

between the Ricci scalar and the scale factor is obtained by multiplying 

the metric tensor matrix with the Ricci tensor matrix and finding the trace 

of the resulted matrix. This procedure gives:              

     )(6 2
2 kaaa

a
R ++−= &&&                                                          (2.18)   

2.2.3.3   Stress-energy tensor 

In this section, we will define the stress-energy tensor or the 

energy-momentum tensor of a perfect fluid. It tells us all we need to know 

about the system as energy density, pressure, stress, etc. Let’s consider 

the very general category of matter which may be characterized as a fluid 

(a continuum of matter described by macroscopic quantities such as 

temperature, pressure, viscosity, etc. In general relativity, all interesting 

types of matter can be thought of as perfect fluids, from stars to 

electromagnetic fields to the entire universe. Schutz [19] defines a perfect 

fluid to be one with no heat conduction and no viscosity, while Weinberg 

[17] defines it as a fluid which looks isotropic in its reference frame and 

these two definitions seem to be equivalent. Operationally, you should 

think of a perfect fluid as one which may be completely characterized by 

its pressure and density. The stress-energy tensor of a perfect fluid is 

defined as [10,11]:           
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     µννµµν ρ pgUUpT ++= )(                                                 (2.19)                                          

where ρ  is the fluid’s density, p is its pressure, and U is the 4-velocity of 

the fluid.  

The 4-velocity is a four-vector, a vector in four-dimensional 

spacetime that replaces classical velocity, a three-dimensional vector. The 

components of the 4-velocity of a perfect fluid at rest or in comoving 

frames are given by:   

     
0
1

=

=
i

t

U
U                                                                                 (2.20). 

Figure (2.4) shows the components of the stress-energy tensor. 

  

                      Figure (2.4)   components of the stress-energy tensor [21] 

By using equations (2.7), (2.19), (2.20) we can write the stress-

energy tensor of a perfect fluid at rest in matrix form as:  
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⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

p
p

p
T

000
000
000
000ρ

µν                                                        (2.21) 

as we can notice the elements ( jiT ij ≠, ) are all zero since there are 

neither viscosity nor heat conduction nor motion in the perfect fluid. 

From the matrix representation of the stress-energy tensor we see that: 

ρ== ttTT 00  (the time-time component of the stress-energy tensor), and 

pTTTT rr ==== 332211  (the space-space components of the stress-

energy tensor).   

2.2.4   Einstein field equations (EFEs)  

EFEs can be derived from the Hilbert-Einstein action [22]:  

     xdgRhSg
4∫ −=                                                                 (2.22)                                          

where g is the determinant of the metric tensor ( µνg ), R is the Ricci 

scalar curvature which is the trace of the Ricci curvature tensor ( µνR ), h 

is the constant 1/16πG, gR − is the Lagrangian density, and the integral 

is taken over a specified region of spacetime.  

To derive the full field equations, a matter Lagrangian ML  is added 

to the above action:                                                                

     [ ] xdgLhRS Mtot
4∫ −+=                                                              (2.23) 
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In physics, the action is an integral quantity that is used to 

determine the evolution of a physical system between two defined states. 

The evolution of a physical system between two states is determined by 

requiring the action to be minimized or, more generally, to be stationary. 

This requirement leads to differential equations that describe the true 

evolution. Conversely, an action principle is a method for reformulating 

differential equations of motion for a physical system as an equivalent 

integral equation. 

The most commonly used action principle is Hamilton’s principle 

which states that the true evolution q(t) of a system described by N 

generalized coordinates q = (q1,q2,…,qN ) between two specified states       

q(t1) and q(t2) at two specified times t1, t2 is an extremum (i.e., a 

stationary point, a minimum, a maximum, or a saddle point) of the action 

( )[ ] dttqqLtqS
t

t
∫=
2

1

),,( &  where ),,( tqqL & is the Lagrangian function of the 

system. Accordingly, the actual evolution of a physical system is the 

solution of the equation:      

     .0
)(
=

tq
S

δ
δ                                                                             (2.24) 

Let’s go to an analogy from one-dimensional classical mechanics 

by taking the following action:                                                            
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     dtxxLS
t

t
∫=
2

1

),( &                                                                     (2.25)                                           

we assume here that the Lagrangian L (the integrand of the action 

integral) depends only on the coordinate x and its time derivative x& , and 

does not depend on time explicitly. The requirement that S be stationary 

implies that Sδ must be zero, this can be true only if :         

     0=
∂
∂

−
∂
∂

x
L

x
L

dt
d

&
                                                                   (2.26)                                          

which is the Euler-Lagrange equation. 

The EFEs may be obtained from the variation of the action in 

equation (2.23) with respect to µνg :     

     
( )

∫ −
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

+= xdg
gg
Lg

gg
g

R
g
Rh

g
S Mtot 4

µνµνµνµν δ
δ

δ
δ

δ
δ

δ
δ  (2.27)    

now, we have the following equations [22]:                                                                                            

     0=
µνδ

δ
g
Stot                                                                              (2.28) 

which is the condition for the actual evolution of the physical system.  

     µν

µνδ
δ R
g
R

=                                                                          (2.29)  
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     µν

µνδ
δ

g
gg
g

2
1

−=
−

−
                                                           (2.30) 

since the stress-energy tensor describes the matter, it must be derived 

from a matter lagrangian:                                                                                     

     µν

µνδ
δ

T
gg
Lg M

2
1)(

−=
−
−

.                                                       (2.31) 

By substituting into equation (2.27), we get:  

     ( )∫ −⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ −= xdggTRgRh 4

2
1

2
10 µν

µνµνµν δ                 (2.32)  

the expression in brackets must be zero, so:  

     0
2
1

2
1

=−⎟
⎠
⎞

⎜
⎝
⎛ − µνµνµν TRgRh                                              (2.33) 

and                                                                           

     µνµνµν πGTRgR 8
2
1

=−                                                      (2.34)                                           

which is (EFEs). The above form of the EFEs is for the +--- metric sign 

convention, which is commonly used in general relativity. Using the        

-+++ metric sign convention, which is used in this work, leads to an 

alternate form of the EFEs which is [17,24,25]:                              

     µνµνµν πGTRgR 8
2
1

−=−                                                    (2.35)  
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2.3   The Limiting Curvature Hypothesis (LCH) 

As we discussed so far, the singularity theorems of Hawking and 

Penrose imply that general relativity gives an incomplete description of 

the behavior of spacetime at high curvatures. So, we must implement a 

more realistic cosmological model that gives a more comprehensive 

description of the behavior of spacetime at high curvatures. This can be 

done by modifying EFEs by creating new field equations that achieve our 

goals. On the other hand, our new field equations must approach 

Einstein’s field equations at low curvatures where Einstein’s theory of 

general relativity is working properly. Now, let’s talk about Penrose 

diagrams [23], which give a clear explanation of the limiting curvature 

hypothesis. Figure (2.5) shows these diagrams which are talking about the 

collapsing universe (left) and black holes (right) in Einstein’s theory (top) 

and in the nonsingular universe (bottom). C, E, DS and H stand for 

contracting phase, expanding phase, de Sitter phase and horizon, 

respectively, and wavy lines indicate singularities. 
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                             Figure (2.5)   Penrose diagrams 

If successful, the above construction will have some consequences. 

Consider, for example, a collapsing spatially homogeneous universe. 

According to Einstein’s theory, this universe will collapse in finite proper 

time to a final “big crunch” singularity (top left Penrose diagram). In our 

theory, however, the universe will approach a de Sitter model as the 

curvature increases. If the universe is closed, there will be a de Sitter 

bounce followed by re-expansion (bottom left Penrose diagram). 

Similarly, in our theory spherically symmetric vacuum solutions would be 

nonsingular, i.e., black holes would have no singularities in their centers 

(bottom right) compared to what is predicted by Einstein’s theory (top 

right) which says that a black hole will collapse into a singularity.  
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2.3.1   Implementing LCH  

In order to implement (LCH), we must modify Hilbert-Einstein 

action by putting a limit to the Ricci scalar, which is the quantity to be 

limited . To illustrate this, let’s go to the analogy [8,23] with the action 

for point particle motion in special relativity which can be obtained from 

Newtonian mechanics. The starting point is the Newtonian action for a 

point particle:        

     ∫ ∫== 2

2
1),,( xdtmdttxxLS &&                                              (2.36) 

In classical theory, there is no bound on the velocity. So, this action must 

be modified to give a bound on the velocity. By adding a Lagrange 

multiplier φ which couples to 2x& , the scalar quantity which is to be 

limited, and giving φ a potential V(φ) the new action is:                             

     ∫ ⎥⎦
⎤

⎢⎣
⎡ −+= )(
2
1 22 ϕϕ VxxdtmS &&                                              (2.37) 

provided that V(φ) ~ φ for |φ| ∞→ . The constraint equation ensures that 

x&  is bounded. 

In order to obtain the correct Newtonian limit for small velocities 

(i.e., small φ), V(φ) must be proportional to φ2 for |φ| 0→ . As a result, the 

simplest potential which satisfies the above conditions is:                          
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ϕ

ϕϕ
21

2)(
2

+
=V                                                                      (2.38) 

Eliminating the Lagrange multiplier using the constraint equation and 

substituting the result into the action yields the point particle action in 

special relativity:                                                                                     

     ∫ −= 21 xdtmS &                                                                 (2.39) 

So, to implement (LCH), we must modify the Hilbert-Einstein action and 

postulate an action like [8,23]:                

     [ ]∫ −++= xdgVRRkSg
4

111 )(ϕϕ                                      (2.40) 

Let us consider )()( 111 ϕϕ VRRRL ++= . At low curvature, L(R) must 

approach R so that our action approaches the Hilbert-Einstein action. On 

the other hand, in the region of space where the curvature approaches the 

limiting value, our action approaches the Hilbert-Einstein action with a 

certain cosmological constant.                                                                                    

2.3.2   The new field equations 

The field equations corresponding to the above action in equation 

(2.40) can be obtained from the variation of the action for matter plus 

gravity with respect to µνg , the same way we derived EFEs. To derive the 

full field equations, a matter Lagrangian LM must be added to the action:               



 29

     xdgLRkLS Mg
4))((∫ −+=                                              (2.41)               

Now, the problem is to find an expression for L(R) (this will be left for a 

future work) so that the variation of the action with respect to µνg   yields 

the following field equations [6]:   

     µνµνµνµν πGTgURgR 8)1(
4
1

2
1

−=−Λ−−                          (2.42) 

where                                                                                         

     2

2

1
Λ

−=
RU                                                                       (2.43)  

and Λ is a limiting curvature scale and a cosmological constant at the 

same time. We restrict R to the range Λ≤≤Λ− R and 0≥Λ . My 

subsequent work will be based on these field equations.  

We notice that equation (2.42) is a modification of Einstein’s field 

equations (2.35). We modify Einstein’s field equations by inserting a 

certain cosmological constant in it. As we can see, equation (2.42) 

approaches the Einstein field equation at low curvatures (when 0→R ). 

By returning to equation (2.42), it is obvious that there is a limiting 

value of curvature Λ=R beyond which the equation become imaginary 

leading to a manifest implementation of the limiting curvature hypothesis 

the same way as implementing the limiting speed postulate in special 

relativity. 
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In the following section we will find solutions of the field equation 

for different kinds of matter beginning with the limiting state case.                                                       

2.3.3   Finding cosmological equations 

By contracting the field equation (2.42) with respect to the µ and v 

indices we get the trace equation:                                                                

     ( ) GTUR π81 −=−Λ−−                                                      (2.44)  

or                                                                                            

     
Λ

=−+
Λ

GTUR π81                                                              (2.45) 

where T is the trace of µ
νT . Now, we shall introduce the following 

notations: 
Λ

=
Rβ  and

Λ
=

GTπγ 8 . Equation (2.45) becomes:              

     γββ =−−+ 211                                                             (2.46) 

this equation yields:                                               

     ( ) 02122 22 =−+−+ γγβγβ .                                            (2.47) 

This equation has two solutions:                          

     ( ) γγγβ 21
2
11

2
1 2 +−±−−=                                            (2.48) 

The next step is to find differential equations from the field equation that 

describe the relation between the scale factor (a), the radius of the 

universe, and time for different kinds of matter.    
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2.3.3.1   The limiting state (vacuum dominated universe)  

LCH is constructed according to two important points [8]. The 

first one is that all curvature invariants are bounded, and the second is that 

when these invariants approach their limiting value, a nonsingular de 

Sitter solution is taken on. So, at the limiting state we will have a de Sitter 

space and thus a vacuum dominated universe. As a result, the stress-

energy tensor vanishes because there is neither pressure nor energy 

density in vacuum. So, T = 0 and hence 0=γ . Now according to equation 

(2.48) the value of β corresponding to 0=γ is either 0 or -1, and since we 

study the limiting state case, we choose β = -1. Now, when 0=γ  and 

1−=β  the field equation (2.42) becomes:                                                                        

     0
4
1

=Λ+ µνµν gR                                                                 (2.49) 

and the time-time component of the field equations takes the form [17]:               

     0
4
13 =Λ−

a
a&&                                                                        (2.50) 

and the space-space components are [17]:         

     ( ) 0221
4
1 2

2 =++−Λ kaaa
a

&&&                                              (2.51) 

where k was discussed so far. We can combine equations (2.50) and 

(2.51) to get a first order differential equation:                                                                                      
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     kaa −
Λ

=
12

2
2&                                                                       (2.52) 

also we can get a second order differential equation from these equations 

by adding them:                                                                             

     0
2

=
+

−
a

kaa
&

&&                                                                      (2.53) 

2.3.3.2   The radiation dominated universe 

 The big bang starts off with a state of extremely high density and 

pressure for the universe. Under those conditions, the universe is 

dominated by radiation. This means that the majority of the energy is in 

the form of photons and other massless or nearly massless particles (like 

neutrinos) that move at near the speed of light. As the big bang evolves in 

time, the temperature drops rapidly as the universe expands and the 

average velocity of particles decreases.  

 The existence of the Cosmic Microwave Background radiation 

(CMB) suggests that the universe was governed by radiation for most of 

the first 100,000 years until the energy density of matter became larger 

than that of radiation such that the energy of the matter began to dominate 

the universe’s evolution [26]. In that epoch, the radiation density or the 

photons density decreases just like the matter density so it goes as:                                                        
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     Photon density 3a
N

=                                                            (2.54)                                           

where N is the number of photons, and a is the scale factor. But not only 

does the photons density decrease with time, the average energy per 

photon also decreases because the universe is expanding and cooling 

therefore we have the following:                                                                                             

     Photon energy density = 43

1
a
N

aa
N

=                                    (2.55)                                           

the extra term 
a
1  represents the average energy per photon. In this case, 

the equation of state becomes that of pure radiation [11,17,27]:                                                             

     
3
ρ

=p                                                                               (2.56) 

where p is the pressure and ρ is the energy density. The trace of the stress-

energy tensor vanishes since ρ−= pT 3 , as a result 0=γ . We choose β = 

-1 since we want to choose β = 0 for the empty flat spacetime. The field 

equations (2.42) become (for 0=γ  and 1−=β ):  

     µνµνµν πGTgR 8
4
1

−=Λ+                                                    (2.57)                                           

the time-time component of the field equations becomes:   

     ρπG
a
a 8

4
13 −=Λ−

&&
                                                             (2.58) 

while the space-space component of the field equations gives:  
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     ( ) Gpkaaa
a

π8221
4
1 2

2 −=++−Λ &&&                                       (2.59) 

Equations (2.58) and (2.59) may be combined to eliminate a&&  and this 

yields:  

     kaaGa −
Λ

+= 222

123
8 ρπ

&                                                    (2.60)  

According to equation (2.55) ρ depends on the scale factor so ρ can be 

written as [6]:                                                                                  

     4

4
00

a
a

rr ρρρ ==                                                                  (2.61)                                           

where 0
rρ  and 0a are the present values of the radiation density and the 

scale factor.  

Finally, we will introduce the relation between the scale factor and 

time in a radiation dominated universe as suggested by CGR for k = 0, 

which is a singular solution [26];                          

     21)( btta =                                                                            (2.62)  

where b is a constant.                                                                                                                               

2.3.3.3   The matter dominated universe  

The energy density of the known forms of radiation in the present 

universe is less than one-hundredth the density of the rest-mass. In other 

words, we have reached a state where the energy of the universe is 

primarily contained in non-relativistic matter (matter sufficiently massive 
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that its average velocity is very much less than the speed of light and the 

pressure generated there is extremely small compared with the energy 

density). This is called a matter dominated universe. The early universe 

was radiation dominated, but the present universe is matter dominated. In 

the matter dominated universe, which is the present epoch, the main 

energy density is that of ordinary matter in galaxies, whose random 

velocities are small and which therefore behave like dust. So, we deal 

with non-relativistic matter particles, and the pressure is zero. As a result, 

the trace of the energy-momentum tensor is equal to ( ρ− ) 

and
Λ

−
=

ρπγ G8  . Therefore, γ  is a function of time because ρ  is a 

function of time and so is β  because according to equation (2.48) it 

depends onγ . 

The field equations (2.42) can be rewritten as:  

     µνµνµν πGTgtfR 8)( −=Λ+                                                (2.63) 

where )112(
4
1)( 2ββ −−+−=tf  and

Λ
=

Rβ . The time-time 

component of equation (2.63) is:                                                            

     ρπGtf
a
a 8)(3 −=Λ−
&&

                                                         (2.64) 

and the space-space components are:                                
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     ( ) 0221)( 2
2 =++−Λ kaaa

a
tf &&&                                           (2.65) 

we can use equations (2.64) and (2.65) to eliminate the second derivative 

of the scale factor and obtain a first order differential equation:  

     katfaGa −Λ+= 222 )(
3
1

6
8 ρπ

&                                            (2.66)  

We can get another second order differential equation by adding 

equations (2.64) and (2.65):                                                       

     22 4 aGkaaa ρπ−=− &&&                                                         (2.67)  

The density in the matter dominated universe is equal to the mass 

of the universe divided by its volume, and since the volume is 

proportional to the cube of the radius, then matter density depends on the 

scale factor according to the following equation:                                                                                    

     3a
b

=ρ                                                                                 (2.68) 

where b is a constant which is approximately equal to the mass of the 

present universe. However one can get a second independent equation 

from the equations (2.18), (2.48), and by using the following equation:  

     Λ= βR                                                                                (2.69) 

this yields:              
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     ( )γγγ 211
12

2
2

2 +−±−
Λ

=++
akaaa &&&                               (2.70)                                   

If we combine equations (2.67) and (2.70) to eliminate the second order 

derivative term we get:  

     ( )γγγρπ 211
24

2 2
2

22 +−±−
Λ

+=+
aaGka&                      (2.71)                      

It is also possible to get another first order equation by integrating 

equation (2.67), and we get:  

     )(8 222 aIGakCaa π−−=&                                                   (2.72)                               

where ∫= da
a

I ρ and C is a constant that can be evaluated from the 

present values of the Hubble constant, matter density, and scale factor;   

     2
0

0
2
0 3

8
a
kGHC +−= ρπ .                                                     (2.73)                                          

Another way to proceed is to find an expression for γ  in terms of the 

scale factor and its derivatives from equations (2.70) and substitute it in 

the trace equation after having removed the square root, this yields:  

     ( ) ( ) ( )
( ) 022

133425
22

2222

=++Λ−

++++

kaaaa
kakaaaaa

&&&

&&&&&&
                                   (2.74)                              

If we put kaY += 2&  in equation (2.74) then a
da
dY

&&2= . Equation (2.74) 

becomes:  
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The scale factor in the matter dominated universe as a function of time for 

the three cases of k (k = +1, k = 0, k = -1) as predicted by CGR is shown 

in figure (2.6). 

            

       Figure (2.6)  Scale factor vs time in the matter dominated universe [17]     

 

2.3.3.4   Combination of matter and radiation 

When the radiation density equals the matter density, the universe 

is neither radiation dominated nor matter dominated since the two 

densities are equal. In this case we can say that the universe is dominated 

by both matter and radiation, the matter in the form of galaxies and 
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radiation being represented by the microwave background radiation. The 

field equations in this case take the form of (2.63). The time-time 

component of the field equations is:                                                                   

     )(8)(3 rmGtf
a
a ρρπ +−=Λ−
&&

                                            (2.76) 

where mρ and rρ  are the matter and radiation densities respectively. The 

space-space component is:                               

     ( ) )(8221)( 2
2 rm ppGkaaa

a
tf +−=++−Λ π&&&                    (2.77) 

where mp and rp  are the matter and radiation pressures respectively. The 

two equations can be combined to obtain a first order differential 

equation:                                                         

     katfaGa rm −Λ++= 222 )(
3
1)(

6
8 ρρπ

&                                (2.78)   

Now, let’s look at the behavior of the solution of this differential 

equation: for values of the scale factor near the minimum radius (the 

minimum radius is obtained by setting the rate of expansion a&  equal to 

zero and k = 1 and solving for a), the universe is radiation dominated and 

the solution of (2.78) is the same as the solution of (2.60) which stops and 

bounces at the minimum radius. For large values of the scale factor the 

universe becomes matter dominated and reaches maximum radius and 
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collapses. The minimum radius is not zero and the initial and final states 

of the universe are not singular.               

2.3.3.5   Spherically symmetric solutions 

In this section, we will obtain a solution of the field equations 

outside a spherically symmetric massive object, and a solution that 

represents a collapsing star (this solution will demonstrate the relation 

between the star radius and time when the star collapses and dies). After 

the formation of the star, the star lives the longest and most stable period 

in its life (approximately 109 years). In this period, it burns hydrogen in 

its core and converts it to helium, generating heat and light. In this period, 

the life of a star is a struggle between the inward pull of gravity and the 

outward push of pressure. The force of gravity comes from the attraction 

between the core of the star and the outer layers and the pressure comes 

from the heat produced by the burning of hydrogen. When the fuel is used 

up, the temperature declines and the star begins to shrink as gravity starts 

winning the struggle.  

As the core of the star burns all the hydrogen into helium at the 

end its life, the star becomes a red supergiant. In this stage the core of the 

star shrinks, becoming hotter and denser, and the outer layers expand. 

After that, different nuclear processes occur like fusion which produces 

heavier elements that temporarily stop the core's shrinking. Eventually 
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this core collapses (in an instant).  As the iron atoms are crushed together 

in this gravitational collapse, the core temperature rises to about 100 

billion degrees. The repulsive electrical forces between the atoms’ nuclei 

overcome the gravitational forces, causing a massive, bright, short-lived 

explosion called a supernova. During this explosion, the star's outer layers 

are thrown away.  

The next stage determines the fate of the star depending on the 

remaining mass of the star (the core). For the Sun-like Stars (mass under 

1.5 times the mass of the Sun), they will collapse into a white dwarf. If 

the star's remaining mass is between 1.5 to 3 times the mass of the Sun, it 

will collapse into a neutron star. If the star's remaining mass is greater 

than three times the mass of the Sun, the star will collapse and become a 

black hole which is an incredibly dense body with a gravitational field so 

strong that even light cannot escape. It is a body in which all of the mass 

has collapsed gravitationally inside the point of possible escape. This 

point of no return, given by the surface r = 2GM, is known as the event 

horizon, and can be thought of as the surface of a black hole. The black 

hole is an object with a gravitational field so powerful that a region of 

space becomes cut off from the rest of the universe, no matter or radiation 

that has entered the region can ever escape. As not even light can escape, 

black holes appear black. When we talk about black holes we are not 

talking about something that is imaginary or does not exist in the real 
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world. Cosmologists detected black holes in our galaxy which are not 

singular (i.e they have volume and their radii are not zero). For example, 

one of these black holes is known as Cygnus X-1 which is located in 

Cygnus constellation.  

Cygnus X-1 is a source located in our galaxy, the Milky Way, at a 

distance of about 10,000 light-years from the Earth. It is a binary system 

composed of a blue giant star 33 times more massive than the Sun and of 

an extremely dense and compact object of 15 solar masses. The compact 

object in the Cygnus X-1 binary is most probably a black hole. The 

picture in figure (2.7) is a composite image that shows the binary system 

Cygnus X-1. This illustration shows how matter from the giant blue star 

(left) is accreted in a spiraling disk of material around a black hole (right). 

            

 

             Figure (2.7)   the binary system Cygnus X-1 [28] 
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The cosmologists determine the location of black holes by 

watching the effect of black holes on the coordinate system around them. 

They see that the coordinate system around the black holes is curved. 

Black holes as presently understood are described by the theory of 

general relativity. This theory showed that gravitation is due to curvature 

of space that is caused by the presence of masses and predicts that when a 

large enough amount of mass is present within a sufficiently small region 

of space, all paths through space are warped inwards towards the center 

of the volume. When an object is compressed enough for this to occur, 

collapse is unavoidable (it would take infinite force to resist collapsing 

into a black hole). When an object passes within the event horizon at the 

boundary of the black hole, it is lost forever (it would take an infinite 

amount of effort for an object to climb out from inside the hole). Figure 

(2.8) shows the different stages in the death of giant stars [29];  

                                Figure (2.8)   Death of giant stars 
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In vacuum flat spactime, the stress-energy tensor vanishes since 

there is no pressure and energy density. As a result, 0=γ and β = 0 or -1. 

Since we choose β = -1 for the radiation dominated universe, we will 

choose β = 0 for the vacuum flat spacetime. By substituting 0== βγ , the 

field equations (2.42) become:                                                      

     0=µνR                                                                                (2.79) 

which are Einstein’s field equations for the vacuum.                                 

2.3.3.6   Derivation of the Schwarzschild solution 

Now, let’s return to equation (2.11), to derive this solution we 

begin from the standard form of the metric which is [17]:  

     22222222 sin)()( ϕθθ drdrdrrAdtrBds −−−=                  (2.80) 

The Ricci tensor can be defined by using Christoffel symbols as [17]:  
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by using equations (2.13) and (2.81) we can find the components of the 

Ricci tensor:                
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     0=µνR  for v≠µ                                                                        

From equations (2.82) we have:  
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The Schwarzschild solution represents the solution of EFEs for 

empty space so equation (2.79) applies here. As a result, we see that it 

will suffice to set the components of the Ricci tensor defined in equations 

(2.82) equal to zero, so equation (2.83) requires that AABB // ′−=′  or:  

     =)()( rBrA Constant.                                                          (2.84) 

For ∞→r , the standard metric must approach the flat space 

metric in spherical coordinates (equation (2.8)), that is:  

     1)(lim)(lim ==
∞→∞→

rBrA
rr

                                                        (2.85) 

from equations (2.84) and (2.85) we get:                                        

     
)(

1)(
rB

rA =                                                                         (2.86) 

by using (2.86) in (2.82) we get:  

     )()(1 rBrrBR +′+−=θθ                                                      (2.87) 

and since 0=θθR this yield:                                                  
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     1)()( =+′ rBrrB                                                                  (2.88) 

or                                                                                                 

     1))(( =rrB
dr
d                                                                      (2.89) 

if we integrate (2.89) we get:                                          

     += rrrB )( Constant.                                                           (2.90) 

or                                                                                        

     
r

rB Constant.1)( +=                                                            (2.91) 

To find the constant of integration we recall that at great distances 

from a central mass M, the component )(21 rBgtt −=−−= φ , where 

rMG /−=φ is the Newtonian potential. As a result, we have:                                                               

     
r

MGrB 21)( −=                                                                   (2.92) 

and                                                                                  

     
121)(
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r
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By using (2.92) and (2.93) in (2.80) we get the Schwarzschild solution. In 

section 3.4 we will find a spherically symmetric solution for equation 

(2.42) which represents the metric inside the star. 
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                                  Chapter   3 

                      Numerical Solutions of the               

                        Cosmological Equations 

So far, in the second chapter, we have found linear and nonlinear ordinary 

differential equations that represent the cosmological model and the 

relation between the scale factor and time for different kinds of matter. 

Also we have found a nonlinear ordinary differential equation that 

represents the relation between the radius of a giant star and time when 

this star collapses to form a black hole. In this chapter, we are going to 

talk about equations that we will solve and then find solutions for these 

equations. We will display the results that come from solving these 

equations by directly plotting the explicit solutions and plotting the 

numerical solutions of the differential equations that we did not find 

analytical solutions for them.  

3.1 The limiting State  

Let’s begin with equation (2.50), the solution of this equation with 

the use of Matlab is shown in (appendix A) where 
12
Λ

=b   which is:                                            
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     )
12

cosh(0 taa Λ
=                                                                 (3.1)                                          

If k = +1, let’s look at equation (2.53). If we introduce a new variable 

kaA += 2&  then 
da
ada

da
dA &

&2= . Now, a
da
ad

dt
da

da
ad

dt
ada &

&&&
&& === . As a result, 

a
da
dA

&&2= . In terms of the new variable, equation (2.53) becomes:                                        

     
a
A

da
dA 2=                                                                               (3.2) 

if we integrate (3.2) we get the following equation:                                                  

     2baA =                                                                                  (3.3) 

where b is a constant. By substituting the value of kaA += 2&  in equation 

(3.3) and putting k = +1 we get:                                                                                                 

     122 −= baa&                                                                            (3.4) 

which is the same as (2.52) with
12
Λ

=b . This equation yields:  

     
12 −

=
ba

dadt                                                                        (3.5) 

By integration, the solution of (3.4) is found to be:                              

     
b

tba cosh
=                                                                         (3.6) 

For simplicity and because we want to know the shape of the solution I 
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will solve equation (3.4) by putting b =1. The solution of this equation is 

(see appendix A):  

     )cosh(
2
1

2
1 2 teea tt =⎟

⎠
⎞

⎜
⎝
⎛ += −                                                   (3.7) 

this solution is shown in the figure (3.1);  

                               

                   Figure (3.1)   Scale factor versus time (limiting state; k=+1) 
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To create a 3-D plot of this relation we use cylindrical coordinates 

and put 22 yxa += . According to that, equation (3.7) becomes: 

221cosh yxt += − . Figure (3.2) shows the 3-D plot; 

 

  Figure (3.2)   3-D plotting of scale factor versus time (limiting state; k=+1) 

 

For the case k = 0, the solution of equation (2.52) where 

12
Λ

=d and a(0) = a0, is given by (see appendix A):                                                                       
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where 
Λ

=
1

0a . To plot the solution, we put 2810 −−=Λ m . The solution 

is shown in figure (3.3).  

         

        Figure (3.3)   Scale factor versus time (limiting state; k=0)  
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The 3-D plotting of this relation is shown in figure (3.4). 

 

 

 

    Figure (3.4)   3-D plotting of scale factor versus time (limiting state; k=0) 

 

For the case k = -1, equation (3.5) becomes 
12 +

=
ba

dadt  

the integration of this equation gives:                                            
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b

tba sinh
=                                                                          (3.9)                                           

This solution is not singular. The singularity of this solution at t = 0 is a 

coordinate singularity not a real singularity. The solution is shown in figure 

(3.5) for b = 1. 

 

                Figure (3.5)   Scale factor versus time (limiting state; k=-1) 

 

The 3-D plotting of this relation is shown in figure (3.6). 
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   Figure (3.6)   3-D plotting of scale factor versus time (limiting state; k=-1) 

                                                           

3.2   The radiation dominated universe 

In the case (k = +1), we will solve equation (2.60). If k = +1, this 

equation becomes:               

     1
123

8 222 −
Λ

+= aaGa ρπ
&                                                     (3.10)                                           

where 4

4
00

a
a

rr ρρρ == . This equation can be written as:  
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in this equation , 46
4
0

0

101
3

8
×≈=

aGP rρπ  and 52101
12

−×≈
Λ

=Q  where G is 

the gravitational constant which is equal to 2211 /.1067.6 KgmN−× , 0
rρ is 

the radiation density which is approximately equal to 331 /101 mKg−× ,  0a  

is the present value of the scale factor which is approximately equal to 

m26101× , and Λ  is the curvature constant. We here used the present 

value of the curvature constant which is equal to 252101 −−× m . By setting 

the rate of expansion 0=a&  in equation (3.11) we have:                     

     
Q

PQ
a

2
4112 −±

=±                                                               (3.12) 

If we want ±a to be real, PQ must be less than
4
1 . For the above values of 

P and Q, the value of ma 26101×=+ , and ma 23101×=− . For different 

values of P and Q the values of +a and −a are shown in the following 

table:  

 

 

 

 



 56

P(m4/s2) Q(s-2) +a (m) −a (m) 

1046 10-52 1026 1023 

1 0.1 2.98 1.06 

0.8 0.2 2 1 

0.6 0.3 1.6 0.89 

 

The numerical solution of equation (3.11) for those values of P 

and Q is shown in figure (3.7a), (3.7b), and (3.7c): 

                              

                  Figure (3.7a) Scale factor versus time (radiation dominated    

                                                     universe, k = +1)          



 57

 

 

 

                 Figure (3.7b) Scale factor versus time (radiation dominated    

                                                           universe, k = +1)          
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                         Figure (3.7c) Scale factor versus time (radiation dominated    

                                                            universe, k = +1)          

the value of the scale factor in figure (3.7a) does not change since 

the range of time is short but if we take a large scale, the value of the 

scale factor will change and the graph will be more obvious as in figure 

(3.7b). The initial condition in this case is +a because any value less than 

+a  will produce imaginary solutions. 

If k = 0, equation (2.60) becomes:                   
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where 4

4
00

a
a

rρρ = . The numerical solution of this equation for the above 

values of 0
0 ,arρ , and Λ (here 46

4
0

0

101
3

8
×≈=

aGP rρπ  and 

52101
12

−×≈
Λ

=Q ) is shown in figure (3.8). 

 

                      Figure (3.8)   Scale factor versus time (radiation dominated  

                                                            universe, k = 0) 
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 The square of the scale factor as a function of time is shown in figure 

(3.9); 

            

                      Figure (3.9)   Square of the scale factor versus time   

                                 (radiation dominated universe, k = 0) 

The linear fitting of the solution is (see figure (3.9)):                                                                     

     1102 232 +×= ta  or 2/123 )1102( +×= ta                                 (3.14) 

If k = -1, equation (2.60) becomes:                   
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The numerical solution of equation (3.15) for P=2 and Q=1is (see 

appendix A):     

     ( )( )2
1

973.02sinh29.52
2
1

++−±= ta                                      (3.16) 

this solution is shown in figure (3.10). 

  

        Figure (3.10) Scale factor versus time (radiation dominated universe, k  

                                                               = -1) 

If we change the values of P and Q, we will obtain the same solution but only 

with different values of the constants in the solution. We choose any number 
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greater than zero as the initial conditions in (k = 0) and (k = -1) cases to avoid 

dividing by zero which produces unknown solutions. In figure (3.9) we choose 

a short time interval in order to display the initial condition clearly on the graph 

and to show that the solution is not singular.       

3.3   The matter dominated universe 

In this case, we will continue from equation (2.75). To avoid 

dealing with quantities that are depending on time (unknown functions of 

time such as f(t) in equation (2.66) and γ  in equations (2.70) and (2.71)) 

we will go in the following procedure: 

  It is possible to expand Y in powers of 
Λ
1 :                                 

     ...2
21

0 +
Λ

+
Λ

+=
YYYY                                                            (3.17) 

then 0Y satisfies the following equation:                                  

     01
0

0 =+ Y
ada

dY                                                                      (3.18) 

which has the following solution:                                                          

     
a
CY =0 .                                                                               (3.19) 

At the first order in 
Λ
1 , 1Y satisfies the equation:                     
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which has the following solution:                                 
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From equations (3.17), (3.19), and (3.21) and by putting kaY += 2&  we 

can write a first order differential equation for the scale factor:  

     k
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a
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+
−+ 4

2
2

8
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&                                                       (3.22)                                           

or                     

     k
a
B

a
Aa −=−+ 4

2&                                                                 (3.23)     

where A and B are constants. The sign of A is positive since
8

3 2CA = .  

The sign of B may be either positive or negative but if we put it 

negative a&  will be imaginary for k = +1. So in our work we use positive 

values for A and B. By setting the rate of expansion 0=a& and k = +1, and 

substituting numerical values for A and B  then equation (3.23) will have 

two real roots which represent the minimum radius from which the 

universe starts to expand and the maximum radius at which the universe 

will stop expanding and collapse. The following table shows the values of 

the minimum and the maximum radii at different values of A an B; 
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A 

 

B 

Minimum 

radius(m) 

Maximum 

radius(m) 

4 6 0.9236 5.9813 

10 5 1.4066 4.9158 

9 4 1.5411 3.8412 

 

The solution is shown in figure (3.11a) for different values of A 

and B; 

 

                     Figure (3.11a) Scale factor versus time (matter dominated  

                                                      universe, k = +1) 
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For large values of the scale factor and for k = +1, equation (3.23) 

is reduced to 12 −=
a
Ba& . This differential equation represents a Cycloid 

[30]. This equation comes from the following parametric equations: 

( )ttBt ′−′= sin
2

 and ( )tBa ′−= cos1
2

[31]. Figure (3.11b) shows the graph 

of the scale factor with time according to the parametric equations and for 

B = 2. 

 

                       Figure (3.11b)   scale factor vs time in the matter dominated   

                                        universe for k = +1 as predicted by CGR.    
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The matter density is a function of the scale factor according to 

equation (2.68); as a result, it is a function of time too. The contraction of 

equation (2.63) implies that: 

ρπGtfR 8)(4 =Λ+  or ρπβββ G8)112( 2 =−−+Λ−Λ .  

So since ρ  is a function of time then β  will be a function of time 

too. Figures (3.12) and (3.13) show ρ  and β  as functions of time for 

A=10 and B=5;  

 

                       Figure (3.12) matter density versus time (matter dominated   

                                                          universe, k = +1) 
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     Figure (3.13)   Beta versus time (matter dominated universe; = +1) 

For k=0 and 0=a& , equation (3.23) has one real root which represents 

the minimum radius from which the universe starts expanding forever. 

The signs of A and B are also positive for the same reasons discussed 

above (in the case k = +1). The following table shows the value of the 

minimum radius at different values of A an B;  
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A B Minimum radius(m) 

4 6 0.8736 

10 5 1.2599 

9 4 1.3104 

 

The numerical solution of equation (3.23) for different values of A 

and B is shown in figure (3.14); 

  

    Figure (3.14) Scale factor versus time (matter dominated universe, k = 0) 

For large values of the scale factor, the numerical solution of 

equation (3.23) for A=10 and B=5 is shown in figure (3.15); 
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         Figure (3.15) The cube of the scale factor versus the square of time   

                                    (matter dominated universe, k = 0) 

It is obvious from figure (3.15) that:  

     23 ta ≈                                                                                  (3.24)   

or                                                                                                            

     3/2ta =                                                                                 (3.25)  
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For k= -1 and 0=a& , the sign of A is positive but the sign of B is 

either positive or negative. In both cases, equation (3.23) has two real 

roots, one is positive and the other is negative. The negative real root is 

ignored since the scale factor is always positive. The positive real root 

represents the minimum radius from which the universe starts expanding 

forever. The following table shows the value of the minimum radius at 

different values of A an B;  

A B Minimum radius(m) 

4 -6 6.0183 

10 5 1.1744 

9 -4 4.1279 

 

 The solution is shown in figure (3.16) for different values of A 

and B; 
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                      Figure (3.16) Scale factor versus time (matter dominated  

                                                     universe, k = -1) 
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The three cases are shown together in figure (3.17). 

 

                         Figure (3.17) Scale factor versus time (matter dominated    

                                                  universe, the three cases)   

                                                                                                                    

3.4 The Spherically symmetric solution 

The solution of the field equations outside a spherically symmetric 

massive object will be exactly the Schwarzschild solution (2.11) where 

the quantity (2GM) in this equation is the gravitational radius of the star 

with mass M. Now let’s go back to figure (2.3). This figure shows the 
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shape of the solution outside a massive object which is, in this case, the 

earth. The two-dimensional Schwarzschild solution is:  

     22
2

2

1
θdr

r
r

drds
g
+

−
=                                                            (3.26) 

where GMrg 2= . If ∞→r  the solution becomes 2222 θdrdrds +=  

which is the two-dimensional flat space metric in spherical coordinates. 

This means that at a very large distance from the massive object the space 

is flat. In rectangular coordinates, 2222 dzdydxds ++= or 222 dzdrds += . 

Now let drzdz ′=  then equation (3.26) becomes:            

     ( ) 22
2

22 1
1

drz

r
r

drdzdr
g

′+=
−

=+                                           (3.27)                                   

and                                                                                           

     1
1

12 −
−

=′

r
rz

g
                                                                     (3.28)                                           

this implies that:                                                                         

     
g

g

rr
r

z
−

=′                                                                         (3.29)                                           

and since ∫ ′= drzz ;                                                                 

     )(2 gg rrrz −=                                                                   (3.30) 

this solution is shown in figure (3.18). 
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            Figure (3.18)   Schwarzschild solution 

The internal solution (inside the star) is assumed to be 

homogeneous and isotropic and that the particles inside the star become 

extremely relativistic after being compressed to densities above the 

nuclear density. This means that the equation of state becomes that of 

pure radiation. Now, let’s discuss the analogy between the radiation 
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dominated universe with positive curvature and the star. After being 

compressed to densities above the nuclear density, the particles inside the 

star become extremely relativistic, so we can consider the star as radiation 

dominated universe with positive curvature (k = +1) since the star is 

positively curved because it is a spherical object. We assume that the 

density and the pressure are functions of time only. 

Now, the cosmological equations that govern the radiation 

dominated universe will surely be suitable for describing the collapsing of 

the star. So by putting R, which is the radius of the star, instead of a, 

which is the radius of the universe, in equation (2.60) we get:  

     1
123

8 222 −
Λ

+= RRGR ρπ&                                                    (3.31) 

the density of the collapsing star depends on the radius of the star 

according to the following equation:                                                   

     4

4
0

0 R
Rρρ =                                                                            (3.32)                                           

where 00 , Rρ  are the initial density and radius of the collapsing star 

respectively (the initial density and radius of the remaining mass of the 

star). 

The solution of the differential equation (3.31) is shown in figure 

(3.7). It is very important to notice that the collapsing star will stop at a 

minimum nonsingular radius and will never reach a singularity, which is 
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consistent with Penrose diagrams. According to that, no singularity is 

developed at the center of the collapsing star. 
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                             Chapter   4 
 
                     Analysis and Comments 
 

In this chapter, we will analyze the results that we got in chapter 3 

and we will check if they agree with LCH. First we will discuss the 

limiting state case. In this case LCH suggests that when all curvature 

invariants approach their limiting value, a nonsingular de Sitter solution is 

taken on. So, at the limiting state we will have a de Sitter space. As we 

can see, the solutions (3.1) and (3.6) are the same as equation (2.3). From 

the plots of the limiting state case, the solutions are not singular, the 

universe begins from a nonsingular state (the radius of the universe is not 

zero) at t = 0 and expands. On the contrary, CGR predicts that the 

universe started from a singular state and expanded. In the case (k = -1) 

the solution is not singular. The singularity of this solution at t = 0 is not a 

real singularity. The most important case is when k = +1 which tells us 

that the universe will recollapse after it reaches the maximum radius and 

when it collapse to the minimum radius, we will reach a de sitter solution 

since the curvature approaches its limiting value. The de sitter solution in 

this case is not singular so the universe will reach a minimum radius and 

expand again.  
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In the radiation dominated universe when k = +1, the universe has 

a closed topology. It bounces from a nonsingular state at a minimum 

radius and expands. It will never reach the big crunch singularity as 

suggested by CGR. In this case the behavior of the universe agrees with 

Penrose diagrams and with LCH which suggests that, for spherically 

symmetric spacetime, a collapsing universe will not end up in a big 

crunch, but it will bounce and expand. The reason is that when the radius 

of the universe becomes small the density becomes high and so is 

pressure because the matter in the universe will become relativistic, then 

the outward push of pressure will overcome the inward pull of gravity, 

and this will cause the expansion of the universe. When k = 0, the solution 

that we found, (equation (3.14)), is the nonsingular version of equation 

(2.62) which is suggested by CGR. Since the universe has open topology, 

it will start from a nonsingular state and expand forever. When k = -1, the 

behavior of the universe is the same as the case when k = 0 because, in 

this case, it has an open topology too. 

In the matter dominated universe, and when k = +1, the universe 

expands from a nonsingular radius and reaches a maximum radius and 

then stop and collapse under the influence of gravity. The behavior of the 

universe can be explained as follows: as the universe expands the 

pressure drops down, as a result the force of gravity between the matter 

components of the universe including the dark matter will overcome the 
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force from pressure and this will cause the universe to stop and collapse 

again. The universe will go on collapsing until the radius of the universe 

become small. The universe at that moment will become a radiation 

dominated universe and it will bounce at ( +== aaa ;0& ) and expand 

again. This behavior of the universe in this case is consistent with Penrose 

diagrams.  

At large values of the scale factor, equation (3.23) will be reduced 

to Einstein's equation ( k
a
Ba −=2& ). The solution of this equation when k 

= +1 is shown in figure (2.6). The universe will stop and collapse (see 

[17], p481-483). When k=0, and for large values of the scale factor, the 

solution that we found, (equation (3.25)), is the same solution which is 

suggested by CGR [17] which is ( 3/2ta = ). Since the universe has open 

topology, it will start from a nonsingular state and expand forever. When 

k = -1, the behavior of the universe is the same as the case when k = 0 

because, in this case, it has an open topology too. When we compare 

between figures (2.6) and (3.17) we find that the two figures agree with 

each others in the region where the scale factor is large and the curvature 

is small since equation (2.42) is reduced to EFEs at low curvatures. But at 

high curvatures and at small values of the scale factor, the difference 

between the two figures becomes clear. The solutions in figure (2.6) are 

singular but the solutions in figure (3.17) are not. The idea is: the 
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solutions of equation (2.42) are the same as Einstein's solution at low 

curvatures but they are different at high curvatures.       

For spherically symmetric solutions, there will be no singularity 

inside the event horizon; instead, a de Sitter universe will be reached as 

we see in Penrose diagrams. The giant collapsing star will collapse to a 

minimum radius and expand again. The reason is similar as that in the 

radiation dominated case with closed topology, that when the radius of 

the collapsing star becomes small the density becomes high and the 

particles inside the star will be relativistic and the pressure becomes high. 

In that case the pressure inside the star will overcome the force of gravity, 

and this will cause the expansion of the star. CGR predicts a singularity in 

the center of the black hole, but LCH suggests that the radius of the star 

will reach a minimum nonsingular value and will never reach zero 

resulting in a nonsingular black hole. Finally, the plot in figure (3.18) 

which represents the solution (3.30) is consistent with figure (2.3), the 

curvature decreases as we go away from the black hole or any other 

massive object and increases near the object. At last, we conclude that all 

solutions are nonsingular and this is consistent with our hypothesis “the 

Limiting Curvature Hypothesis”. 
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                                          Appendix   A 

                              Numerical Solutions 
 

1. Limiting State 

// solving equation (2.50) 

      >> a=dsolve('D2a-b*a=0','a(0)=a0','Da(0)=0') 

         a = 

         a0*cosh(b^(1/2)*t) 

k = +1 

>> a=dsolve('Da=(a^2-1)^(1/2)','a(0)=1')  

a =  

(1/2+1/2*exp(2*t))*exp(-t) 

// 2-D plotting 

>> t=0:0.1:3; 

>> a=cosh(t); 

>> plot(t,a)  

// 3-D plotting 

>> [x,y]=meshgrid(-13:2:13); 

>> z=acosh(sqrt(x.^2+y.^2)); 

>> surfc(x,y,z); 
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k = 0 

>> a=dsolve('Da=(d*a^2)^(1/2)','a(0)=a0')  

a =  

exp(d^(1/2)*(t+log(a0)/d^(1/2))) 

// 2-D plotting 

>> t=0:100:100000; 

>> a=10000*exp(2.88688e-5*t); 

>> plot(t,a) 

// 3-D plotting 

>> [x,y]=meshgrid(-134349:1.4142e4:134349); 

>> z=x.^2+y.^2; 

>> a=sqrt(z); 

>> b=a/10000; 

>> c=log(b); 

>> d=c*3.4639e4; 

>> surf(x,y,d); 

k = -1 

>> t=0:0.01:3; 

>> a=sinh(t); 

>> plot(t,a) 
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// 3-D plotting 

>> [x,y]=meshgrid(-12:2:12); 

>> z=asinh(sqrt(x.^2+y.^2)); 

>> surfc(x,y,z); 

2.   Radiation Dominated Universe  

k = +1  

// finding a + and a - for different values of P and Q 

solve('1+0.1*a^4-a^2=0','a')  

ans =  

[ -1.0616104058422671258159534942517] 

[  1.0616104058422671258159534942517] 

[ -2.9787553350699041400414946820376] 

[  2.9787553350699041400414946820376] 

  

>> solve('0.8+0.2*a^4-a^2=0','a')  

ans =  

[  1.] 

[  2.] 

[ -2.] 

[ -1.] 
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>> solve('0.6+0.3*a^4-a^2=0','a')  

ans =  

[ -.88586091627211424411238045875781] 

[  .88586091627211424411238045875781] 

[ -1.5964284419775486855698043212680] 

[  1.5964284419775486855698043212680]   

****************************************** 

function adot=rad_dom_1(t,a) 

adot=(1/a^2+0.1*a^2-1)^(1/2) 

****************************************** 

function adot=rad_dom_11(t,a) 

adot=(0.8/a^2+0.2*a^2-1)^(1/2) 

****************************************** 

function adot=rad_dom_111(t,a) 

adot=(0.6/a^2+0.3*a^2-1)^(1/2) 

****************************************** 

>>[t,a] = ode45('rad_dom_1',[0 10],2.98) 

>>[t1,a1] = ode45('rad_dom_11',[0 8],2.0001) 

>>[t2,a2] = ode45('rad_dom_111',[0 7],1.6) 

>>hold on  

>>plot(t,a) 

>>plot(t1,a1) 
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>>plot(t2,a2) 

>>hold off                                                                  

k = 0 

function adot=rad_dom_0(t,a) 

adot=(1e46/a^2+1e-52*a^2)^(1/2); 

******************************************************* 

[t,a] = ode45('rad_dom_0',[0 1e3],1) 

plot(t,a) 

******************************************************* 

for i=1:321 

b(i,1)=a(i,1)^2 

end 

plot(t,b) 

k = -1 

               a=dsolve('Da=(2/a^2+a^2+1)^(1/2)','a(0)=1')      

               a =  

                     1/2*(-2-2*7^(1/2)*sinh(2*t-asinh(3/7*7^(1/2))))^(1/2),  

                    -1/2*(-2-2*7^(1/2)*sinh(2*t-asinh(3/7*7^(1/2))))^(1/2) 

   3.   matter dominated universe 

k = +1  
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//finding the roots of equation (3.23) for A=4; B=6; 

>> solve('6*a^3-4-a^4=0','a') 

ans = 

    5.9813 

ans = 

    0.9236 

ans = 

  -0.4525 + 0.7206i 

ans = 

  -0.4525 - 0.7206i 

//finding the roots of equation (3.23) for A=10; B=5; 

>>solve('5*a^3-10-a^4=0','a') 

ans = 

    4.9158 

ans = 

    1.4066 

ans = 

  -0.6612 + 1.0045i 

ans = 

  -0.6612 - 1.0045i 

//finding the roots of equation (3.23) for A=9; B=4; 

solve('4*a^3-9-a^4=0','a') 
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ans = 

    3.8412 

ans = 

    1.5411 

ans = 

  -0.6912 + 1.0211i 

ans = 

  -0.6912 - 1.0211i 

********************************************* 

// solving equation (3.23) for A=10 and B=5; 

function adot=matt_dom_1(t,a) 

              adot=(5/a-10/a^4-1)^(1/2); 

               ***************************************** 

[t,a] = ode45('matt_dom_1', [0 7.6], 1.4066)  

plot(t,a) 

***************************************** 

// plotting the matter density with time; 

[t,a]=ode45('matt_dom_1',[0 7.62],1.4066) 

for i=1:45 

rho(i,1)=1/a(i,1)^3 

end 

plot(t,rho) 
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// plotting beta with time; 

solve('-B-1+sqrt(1-B^2)=rho','B') 

for i=1:45 

B(i,1)=-1/2-1/2*rho(i,1)-1/2*(-rho(i,1)^2-2*rho(i,1)+1)^(1/2) 

end 

plot(t,B) 

k = 0 

// finding the roots of equation (3.23) for A=9 and B=4; 

>>solve('4*a^3-9=0','a') 

ans = 

    1.3104 

ans = 

  -0.6552 + 1.1348i 

ans = 

  -0.6552 - 1.1348i 

// finding the roots of equation (3.23) for A=10 and B=5; 

>>solve('5*a^3-10=0','a') 

ans = 

    1.2599 

ans = 

  -0.6300 + 1.0911i 
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ans = 

  -0.6300 - 1.0911i 

// finding the roots of equation (3.23) for A=4 and B=6; 

>>solve('6*a^3-4=0','a') 

ans = 

    0.8736 

ans = 

  -0.4368 + 0.7565i 

ans = 

  -0.4368 - 0.7565i 

// solving equation (3.23) for A=10 and B=5; 

***************************************** 

function adot=matt_dom_0(t,a) 

adot=(5/a-10/a^4)^(1/2); 

***************************************** 

>>[t,a]=ode45('matt_dom_0',[0 2],1.26) 

>>plot(t,a) 

***************************************** 

>>[t,a]=ode45('matt_dom_0',[0 2e10],1.26) 

>>for i=50:145 

a3(i,1)=a(i,1)^3 
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t2(i,1)=t(i,1)^2 

end 

>>plot(t2,a3) 

***************************************** 

k = -1 

// finding the roots of equation (3.23) for A=9 and B=-4; 

>> solve('-4*a^3-9+a^4=0','a') 

ans = 

    4.1279 

ans = 

   -1.2006 

ans = 

   0.5363 + 1.2363i 

ans = 

   0.5363 - 1.2363i 

// finding the roots of equation (3.23) for A=10 and B=5; 

>> solve('5*a^3-10+a^4=0','a') 

ans = 

  -0.5490 + 1.1731i 

ans = 

  -0.5490 - 1.1731i 
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ans = 

    1.1744 

ans = 

   -5.0764 

// finding the roots of equation (3.23) for A=4 and B=-6; 

>> solve('-6*a^3-4+a^4=0','a') 

ans = 

    6.0183 

ans = 

   -0.8364 

ans = 

   0.4090 + 0.7920i 

ans = 

   0.4090 - 0.7920i 

// solving equation (3.23) for A=10 and B=5; and for A=9 and B= -4 

***************************************** 

function adot=matt_dom_minus1(t,a)  

adot=(5/a-10/a^4+1)^(1/2) 

***************************************** 

function adot=matt_dom_minus11(t,a)  

adot=(-4/a-9/a^4+1)^(1/2) 

***************************************** 
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[t1,a1]=ode45('matt_dom_minus11',[0 10],4.128) 

[t,a]=ode45('matt_dom_minus1',[0 10],1.1744) 

hold on 

plot(t,a) 

plot(t1,a1) 

hold off 

// plotting the three cases; 

[t,a]=ode45('matt_dom_1',[0 7.62],1.4066) 

[t1,a1]=ode45('matt_dom_minus1',[0 7.62],1.1744) 

[t2,a2]=ode45('matt_dom_0',[0 7.62],1.26) 

hold on 

plot(t,a) 

plot(t1,a1) 

plot(t2,a2) 

hold off 

***************************************** 

3.    Spherically symmetric solution 

// plotting solution (2.30) 

>> [X,Y] = meshgrid(-38.2525:4.5003:38.2525); 

>> for i=1:17 

for j=1:17 
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s(i,j)=X(i,j)^2+Y(i,j)^2; 

r(i,j)=sqrt(s(i,j)); 

a(i,j)=r(i,j)-3; 

b(i,j)=sqrt(a(i,j)); 

c(i,j)=3.4641*b(i,j); 

d(i,j)=-3.4641*b(i,j); 

end 

end 

>> surf(X,Y,c) 

>> surf(X,Y,d)                     
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